

IMPORTANT:

The TriStar Controller is designed to operate as a solar charge controller, a load or lighting controller, **OR** a diversion controller — one mode at a time and no combined-mode operation.

Specifications:

	TS-45	TS-60	TS-60M
Battery Voltage	12 Vdc, 24 Vdc, or 48 Vdc		
Maximum Solar Input Voltage ²	12 V Nominal Array Voc 24 V Nominal Array Voc 48 V Nominal Array Voc		
Maximum Current (Solar or Load)	45 A 60 A		А
Maximum Current (Diversion) 30 A 40 A		A	
Battery Operating Voltage	9-68 V		
Battery Types Supported	Flooded, Sealed		

² See the Morningstar PV String Calculator at: https://www.morningstarcorp.com/support/

WARNING: Hazardous Voltage

The TriStar charge controller must be installed by a qualified technician in accordance with the electrical regulations of the country of installation.

WARNING: Hazardous Voltage

This unit is not provided with a GFDI device. This charge controller must be used with an external GFDI device as required by the Article 690 of the National Electrical Code for the installation location.

Accessing the wiring terminals:

To Access the Wiring Terminals:

- 1. Remove the 4 screws and star washers from the faceplate.
- 2. Lift the faceplate away from the base.

To Replace the Faceplate:

- 1. Align it with the base.
- 2. Replace the 4 screws and locking washers.
- 3. Hand tighten, careful not to over-tighten.

Wire Sizes and Torque Requirements:

IMPORTANT:

Refer to Section 2.0, Installation, in the TriStar-PWM manual, for all details on installation requirements. System design must comply with any applicable electrical code and regulations.

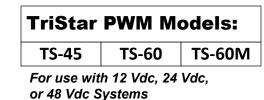
	MINIMUM WIRE SIZES AND TORQUE REQUIREMENTS			
	Battery or Load Terminals		Ground Terminal	
	Rated for 75°C	Rated for 90°C	Ground Terminal	
TriStar-PWM-45	#6 AWG (16 mm²)	#8 AWG (10 mm ²)	#10 AWG (5 mm²)	
TriStar-PWM-60/M	#4 AWG (25 mm²)	#6 AWG (16 mm²)	#8 AWG (8 mm²)	
Torque	50 in-lbs. (5.56 Nm)			
Maximum Length	See Table 2.3-6a in the TriStar PWM Installation Manual for Maximum 1-way Wire Distance.			

Fuses and Circuit Breakers:

- Circuit Breakers or fuses are required in the positive cable for Battery, Solar, DC Load, or Diversion Load connections.
- Solar connections require a PV Ground Fault Disconnect.
- A fuse is required in the positive cable for the Voltage Sense connections.
- Fuse or breaker sizing must be based on required wire ampacity.
- If using a fuse, do NOT insert the fuse in the fuse-holder until after all the other connections have been completed.

Contact Information:

Technical Support: morningstarcorp.com/support Phone: 1-215-321-4457



TRISTAR

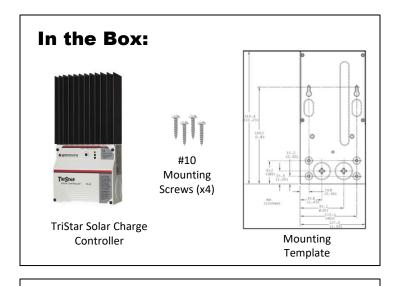
SOLAR CHARGING SYSTEM CONTROLLER

Quick Start Guide

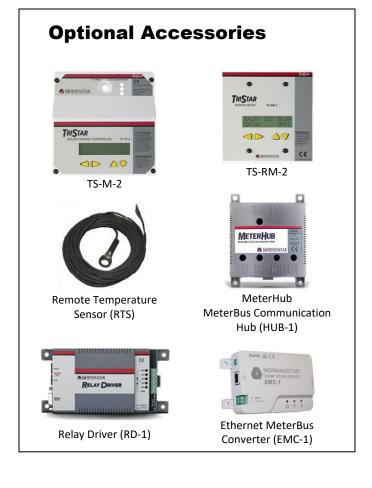
Scan QR Code to go directly to the TriStar **PWM Installation Manual and warranty** information online.

TRISTAR

TriStar Charge

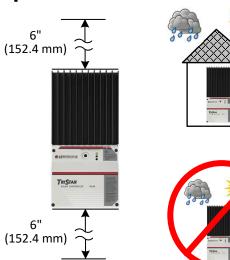

Controller

CAUTION: This guide must be used with the full product manual that includes important information. Carefully read the TriStar-PWM product manual for all specifications, safety, regulatory and warranty information, and for all required instructions on installation procedures, configuration, and operation.


Warranty Registration: https://www.morningstarcorp.com/product-registration/

TriStar Charge Controller

(with Optional Meter)



MS-003471 v2 © 2021 Morningstar Corporation. All Rights Reserved.

TriStar Solar Controller

Quick Start Guide

Minimum Clearance Requirements:

WARNING: Explosion Hazard

Never install the TriStar in an enclosure with vented/flooded batteries. Battery fumes are flammable and will corrode and destroy the TriStar circuits. Ensure sufficient ventilation.

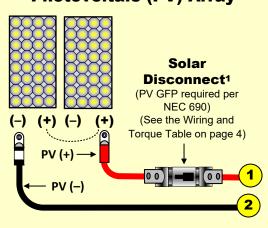
CAUTION: Equipment Damage

Do not expose the TriStar CC to weather. Locate in a dry, protected area to prevent equipment damage.

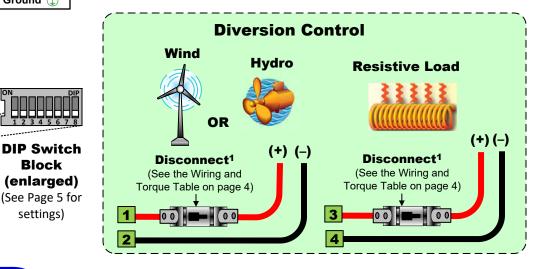
Ensure the minimum clearance requirements are followed to provide adequate ventilation and prevent the unit from overheating.

IMPORTANT:

Array Voltage should NEVER exceed the maximum input voltage.

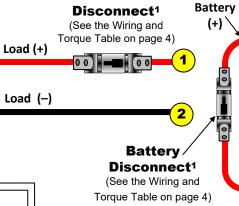


WARNING: Hazardous Voltage


The solar PV array can produce open-circuit voltages in excess of 125 Vdc when in sunlight. Verify that the solar input breaker or disconnect has been opened (disconnected) before installing the system wires.

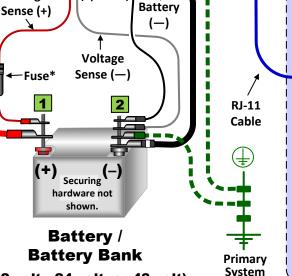
Charge Control

LEGEND IMPORTANT: Example only. Actual wiring may vary. READ the TriStar PWM Installation, Operations, and Maintenance Manual for mandatory Negative (-) safety requirements. All configuration must comply with local and national electric codes. Consult your local electric authority to ensure compliance. Positive (+) _____


Optional Accessories

Remote Meter

(Back)



DC Load

¹Fuse or breaker sizing must be based on required wire ampacity.

IF USING A FUSE, DO NOT INSERT THE **FUSE IN THE FUSE-HOLDER UNTIL** AFTER ALL THE OTHER CONNECTIONS HAVE BEEN COMPLETED.

RTS→

(optional)

Voltage

TS Meter (Back)

IN OUT (TriStar) (Meter) **RJ-11** Cable **TS Meter** Remote TRISTAR (Front) Meter (Front) $\triangleleft \triangleright \triangle \nabla$ TS-M-2 TS-RM-2

Mounting:

Step 1: Choose mounting location

A) Locate the TriStar on a vertical surface that is protected from direct sun, high temperatures, and water.

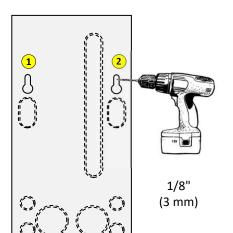
Step 2: Wiring accessibility and air flow clearance

- A) Plan and confirm wire routing-access.
- B) Verify that there is at least 6" of space above and below the unit, and at least 3" (75 mm) around the heatsink.

Step 3: Drill holes

- A) Place the TriStar template on the wall where the unit will be mounted.
- B) Mark and drill two (2) 1/8" (3.175 mm) holes in the top end (slot) of each template keyhole.
- C) Drive a #10 screw into each drill hole to 0.25" (or 6.4 mm) from flush with the wall.

Step 4: Secure the controller


- A) Place the controller circular keyhole areas over the wall screws, and pull the unit down to lock the screws into the slots.
- B) Use the two remaining screws to fasten the lower part of the unit to the wall.

Screw head height for #1 & #2:

0.25" (6.4 mm) off wall

Do **NOT** exceed 0.50" (12.8 mm)

WARNING: Risk of Fire

If no Remote Temperature Sensor (RTS) is connected, use the TriStar-PWM within 10 feet (3 m) of the batteries. Use of the RTS is strongly recommended.

WARNING: Hazardous Voltage

Fuses, circuit breakers, and disconnect switches should never open grounded system conductors. Only GFDI devices are permitted to disconnect grounded conductors.

(12-volt, 24-volt, or 48-volt)

IMPORTANT:

Ground

Ground (1)

Block

settings)

Ensure there is only 1 DC Negative-to-Ground Bond in the entire system

WARNING: Hazardous Voltage

Test between all terminals and ground before touching.

Power or accessory terminals are **NOT** electrically isolated from DC input and may be energized with hazardous voltage.

Power UP Sequence:

- 1. Connect Battery/Battery Bank.
- 2. Connect Solar or loads.

Power DOWN Sequence:

- 1. Disconnect Solar or loads.
- 2. Disconnect Battery/Battery Bank.

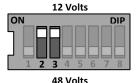
Operational Settings:

DIP Switch #1: Battery Charging/Load Control Mode

Battery Charging

DIP

Load Control Mode

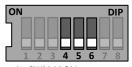

DIP Switch #2 & 3: Battery Voltage

Auto Select ON

24 Volts

DIP

DIP Switch #4, 5, & 6: Mode Settings

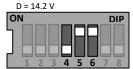

Mode: A = Battery Charging B = Load Ćontrol C = Lighting Control

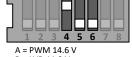
D = Diversion Control

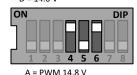
Definitions:

ON

PWM = Pulse Width Modulation LVD = Low Voltage Disconnect


A = PWM 14.0 V B = LVD 11.1 V C = 6 hours after sunset


A = PWM 14.15 VB = LVD 11.3 V C = 8 hours after sunset D = 14.0 V


A = PWM 14.35 V B = LVD 11.5 V C = 10 hours after sunset

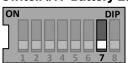
A = PWM 14.4 V B = LVD 11.7 V C = 3 hours after sunset, 1 hour before sunrise

B = LVD 11.9 V C = 4 hours after sunset. 2 hours before sunrise D = 14.6 V

B = LVD 12.1 C = 6 hours after sunset,

2 hours before sunrise D = 14.8 V

A = PWM 15.0 V B = LVD 12.3 V C = Dusk to Dawn D = 15.0 V



A = PWM Custom B = LVD Custom

C = Custom* D = Custom*

(*Requires Computer Connection. See TriStar PWM Installation Manual for details.)

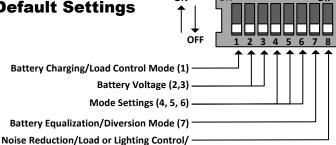
DIP Switch #7: Battery Equalization or Diversion Control Mode

A = Battery Equalization = Manual B & C = NOT USED - MUST BE OFF D = Diversion Control = OFF



A = Battery Equalization = Auto B & C = NOT USED – MUST BE OFF D = Diversion Control = ON

DIP Switch #8: Noise Reduction, Lighting/Load Control, or **Battery Equalization**


A =Normal PWM Charging B = Load Control C = Load Control D = Battery Equalization = Manual

Noise Reduction Mode B = NOT USED-MUST BE OFF C = Lighting Control

D = Battery Equalization = Auto

Default Settings

DIP	Function
(1)	Battery Charging Mode
(2,3)	Auto Voltage Select
(4, 5, 6)	Lowest Battery Charging Voltage (14.0 V)
(7)	Manual Equalization
(8)	Normal PWM Charging Mode

Battery Equalization (8)

CAUTION: EQUIPMENT DAMAGE

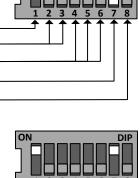
The default position for the DIP switches is **OFF**. Each switch position must be confirmed during installation. Incorrect settings could cause damage to the battery or other system components.

IMPORTANT:

The DIP switches should be changed only when there is no power to the controller. Turn off disconnect switches and remove all power to the controller before changing a DIP switch. A fault will be indicated if a switch is changed while the controller is powered.

Settings by Mode:

Mode A = Battery Charging			
DIP	Function		
(1)	Battery Charging Mode		
(2,3)	Select Battery Voltage ³		
(4, 5, 6)	Standard Battery Charging Programs ³		
(7)	Manual or Automatic Equalization ³		
(8)	PWM Charging or Noise Reduction ³		


³Select settings for DIP 2-8 that are specific to the Installation. DIP 1 must be OFF.

	Mode B = Load Control or Mode C = Lighting Control		
DIP	Function		
(1)	Load Control Mode		
(2,3)	Select Battery Voltage ⁴		
(4, 5, 6)	Low Voltage Disconnect ⁴		
(7)	Not Used - MUST BE OFF		
(8)	Load Control or Lighting Control 4		

 4 Select settings for DIP 2-6 & 8 that are specific to the Installation. DIP 1 must be ON. DIP 7 MUST be OFF.

Mode D = Diversion Control		
DIP	Function	
(1)	Load Control Mode	
(2,3)	Select Battery Voltage ⁵	
(4, 5, 6)	Select Diversion Control Limits ⁵	
(7)	Diversion Control Mode ON ⁵	
(8)	Battery Equalization (Manual or Auto) ⁵	

 5 Select settings for DIP 2-6 & 8 that are specific to the Installation. DIP 1 must be ON. DIP 7 MUST be ON.

LED DISPLAY AND PUSH-BUTTON FUNCTION:

PUSH-BUTTON FUNCTION:

Battery Charging Mode (both solar and diversion):

- PUSH and RELEASE: Reset from an error or fault.
- **PUSH and RELEASE:** Reset the battery service indication if this has been activated with the PC software. A new service period will be started, and the flashing LEDs will stop blinking. If the battery service is performed before the LEDs begin blinking, the push-button must be pushed at the time when the LEDs are blinking to reset the service interval and stop the blinking.
- PUSH AND HOLD 5 SECONDS: Begin battery equalization manually. This will begin equalization in either the manual or automatic equalization mode. The equalization will automatically stop per the battery type selected.
- PUSH AND HOLD 5 SECONDS: Stop an equalization that is in progress. This will be effective in either the manual or automatic mode. The equalization will be terminated.

Load and Lighting Control:

- PUSH and RELEASE: Reset from an error or fault.
- PUSH and HOLD 5 SECONDS: After a low voltage disconnect (LVD) of the load, the push-button can be used to reconnect the loads again. The loads will remain on for 10 minutes, and will then disconnect again. The push-button can be used to override the LVD without limit.

NOTE: The purpose of the LVD is to protect the battery. Repeated overrides of an LVD can deeply discharge the battery and may damage the battery.

LED Legend

- G = Green LED is illuminated
- Y = Yellow LED is illuminated
- R = Red LED is illuminated
- **G/Y** = Green and Yellow are both illuminated at the same time
- G/Y R = Green & Yellow are both illuminated, then Red is illuminated alone
- Sequencing (faults) has the LED pattern repeating until the fault is cleared

General Transitions:

- Controller start-up **G Y R** (one cycle)
- Push-button transitions blink all 3 LEDs 2 times
- Battery service is required all 3 LEDs blinking until service is reset

Battery Status:

Condition	Indication	
Absorption	G flash – every second	
Float G flash – every 2 secon		
Start Equalization	[G / Y / R] x2 – G - G	
Stop Equalization	[G/Y/R] x2 - R - R	
Equalize	G flash – 2 per second	

Battery State-of-Charge (SOC) when battery is charging):

- **G** = 80% to 95% SOC
- Y/R = 0% to 35% SOC
- **G/Y** = 60% to 80% SOC
- R = battery is discharging
- **Y** = 35% to 60% SOC

Battery Charging Status:

	12 V	24 V	48 V
G	13.3 V - PWM	26.6 V - PWM	53.2 V - PWM
G/Y	13.0 to 13.3 V	26.0 to 26.6 V	52.0 to 53.2 V
Y	12.65 to 13.0 V	25.3 to 26.0 V	50.56 to 52.0 V
Y/R	12.0 to 12.65 V	24.0 to 12.3 V	48.0 to 50.56
R	0 to 12.0 V	0 to 24.0 V	0 to 48.0 V

Load Control:

		12 V	24 V	48 V
G	LVD +	0.60 V	1.20 V	2.40 V
G/Y	LVD +	0.45 V	0.90 V	1.80 V
Y	LVD +	0.30 V	0.60 V	1.80 V
Y/R	LVD +	0.15 V	0.30 V	0.60 V
R Blinki	ng	At LVD Threshhold		ld
R		Below LVD		

Faults & Alarms:

Short circuit - solar/load

• Overload - solar/load

• Over-temperature

• High voltage disconnect

• Reverse polarity - battery

• Reverse polarity – solar

DIP switch fault

Self-test faults

• Temperature probe (RTS)

• Battery voltage sense

R/G - Y sequencing

R/Y - G sequencing

R - Y sequencing

R - G sequencing

No LEDs are illuminated

No fault indication

R - Y - G sequencing

R - Y - G sequencing

R/Y - G/Y sequencing

R/Y - G/Y sequencing

For Fault Recovery Instructions, see the TriStar PWM Installation, Operation and Maintenance Manual.

6